59,927 research outputs found

    Modeling and analysis of cascade solar cells

    Get PDF
    A brief review is given of the present status of the development of cascade solar cells. It is known that photovoltaic efficiencies can be improved through this development. The designs and calculations of the multijunction cells, however, are quite complicated. The main goal is to find a method which is a compromise between accuracy and simplicity for modeling a cascade solar cell. Three approaches are presently under way, among them (1) equivalent circuit approach, (2) numerical approach, and (3) analytical approach. Here, the first and the second approaches are discussed. The equivalent circuit approach using SPICE (Simulation Program, Integrated Circuit Emphasis) to the cascade cells and the cascade-cell array is highlighted. The methods of extracting parameters for modeling are discussed

    Charged lepton mixing and oscillations from neutrino mixing in the early Universe

    Full text link
    Charged lepton mixing as a consequence of neutrino mixing is studied for two generations e,μe,\mu in the temperature regime mμ≪T≪MWm_\mu \ll T \ll M_W in the early Universe. We state the general criteria for charged lepton mixing, critically reexamine aspects of neutrino equilibration and provide arguments to suggest that neutrinos may equilibrate as mass eigenstates in the temperature regime \emph{prior} to flavor equalization. We assume this to be the case, and that neutrino mass eigenstates are in equilibrium with different chemical potentials. Charged lepton self-energies are obtained to leading order in the electromagnetic and weak interactions. The upper bounds on the neutrino asymmetry parameters from CMB and BBN without oscillations, combined with the fit to the solar and KamLAND data for the neutrino mixing angle, suggest that for the two generation case there is resonant \emph{charged lepton} mixing in the temperature range T∼5GeVT \sim 5 \mathrm{GeV}. In this range the charged lepton oscillation frequency is of the same order as the electromagnetic damping rate.Comment: 17 pages, 2 figs, same results with more discussions on quantum Zeno effect. To appear in Astroparticle Physic

    The spatially homogeneous relativistic Boltzmann equation with a hard potential

    Full text link
    In this paper, we study spatially homogeneous solutions of the Boltzmann equation in special relativity and in Robertson-Walker spacetimes. We obtain an analogue of the Povzner inequality in the relativistic case and use it to prove global existence theorems. We show that global solutions exist for a certain class of collision cross sections of the hard potential type in Minkowski space and in spatially flat Robertson-Walker spacetimes.Comment: 21 page

    Simulations of a classical spin system with competing superexchange and double-exchange interactions

    Full text link
    Monte-Carlo simulations and ground-state calculations have been used to map out the phase diagram of a system of classical spins, on a simple cubic lattice, where nearest-neighbor pairs of spins are coupled via competing antiferromagnetic superexchange and ferromagnetic double-exchange interactions. For a certain range of parameters, this model is relevant for some magnetic materials, such as doped manganites, which exhibit the remarkable colossal magnetoresistance effect. The phase diagram includes two regions in which the two sublattice magnetizations differ in magnitude. Spin-dynamics simulations have been used to compute the time- and space-displaced spin-spin correlation functions, and their Fourier transforms, which yield the dynamic structure factor S(q,ω)S(q,\omega) for this system. Effects of the double-exchange interaction on the dispersion curves are shown.Comment: Latex, 3 pages, 3 figure

    Effect of epitaxial strain on ferroelectric polarization in multiferroic BiFeO3 films

    Full text link
    Multiferroic BiFeO3 epitaxial films with thickness ranging from 40 nm to 960 nm were grown by pulsed laser deposition on SrTiO3 (001) substrates with SrRuO3 bottom electrodes. X-ray characterization shows that the structure evolves from angularly-distorted tetragonal with c/a ~ 1.04 to more bulk-like distorted rhombohedral (c/a ~ 1.01) as the strain relaxes with increasing thickness. Despite this significant structural evolution, the ferroelectric polarization along the body diagonal of the distorted pseudo-cubic unit cells, as calculated from measurements along the normal direction, barely changes.Comment: Legend in Fig.3 corrected and et

    Does the BICEP2 Observation of Cosmological Tensor Modes Imply an Era of Nearly Planckian Energy Densities?

    Get PDF
    BICEP2 observations, interpreted most simply, suggest an era of inflation with energy densities of order (1016 GeV)410^{16}\, {\rm GeV})^4, not far below the Planck density. However, models of TeV gravity with large extra dimensions might allow a very different interpretation involving much more modest energy scales. We discuss the viability of inflation in such models, and conclude that existing scenarios do not provide attractive alternatives to single field inflation in four dimensions. Because the detection of tensor modes strengthens our confidence that inflation occurred, it disfavors models of large extra dimensions, at least for the moment.Comment: 4 pages, v3: version to appear in JHE
    • …
    corecore